The number of stimuli required to reliably assess corticomotor excitability and primary motor cortical representations using transcranial magnetic stimulation (TMS): a systematic review and meta-analysis

نویسندگان

  • Rocco Cavaleri
  • Siobhan M. Schabrun
  • Lucy S. Chipchase
چکیده

BACKGROUND Transcranial magnetic stimulation (TMS) is a non-invasive means by which to assess the structure and function of the central nervous system. Current practices involve the administration of multiple stimuli over target areas of a participant's scalp. Decreasing the number of stimuli delivered during TMS assessments would improve time efficiency and decrease participant demand. However, doing so may also compromise the within- or between-session reliability of the technique. The aim of this review was therefore to determine the minimum number of TMS stimuli required to reliably measure (i) corticomotor excitability of a target muscle at a single cranial site and (ii) topography of the primary motor cortical representation of a target muscle across multiple cranial sites. METHODS Database searches were performed to identify diagnostic reliability studies published before May 2015. Two independent reviewers extracted data from studies employing single-pulse TMS to measure (i) the corticomotor excitability at a single cranial site or (ii) the topographic cortical organisation of a target muscle across a number of cranial sites. Outcome measures included motor evoked potential amplitude, map volume, number of active map sites and location of the map centre of gravity. RESULTS Only studies comparing the reliability of varying numbers of stimuli delivered to a single cranial site were identified. Five was the lowest number of stimuli that could be delivered to produce excellent within-session motor evoked potential (MEP) amplitude reliability (intraclass correlation coefficient (ICC) = 0.92, 95% CI 0.87 to 0.95). Ten stimuli were required to achieve consistent between-session MEP amplitudes among healthy participants (ICC = 0.89, 95% CI 0.76 to 0.95). However, between-session reliability was influenced by participant characteristics, intersession intervals and target musculature. CONCLUSIONS Further exploration of the reliability of multi-site TMS mapping is required. Five stimuli produce reliable MEP recordings during single-site TMS investigations involving one session. For single-site analyses involving multiple sessions, ten stimuli are recommended when investigating corticomotor excitability in healthy participants or the upper limb musculature. However, greater numbers of stimuli may be required for clinical populations or assessments involving the lower limb. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42015024579.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determining the number of stimuli required to reliably assess corticomotor excitability and primary motor cortical representations using transcranial magnetic stimulation (TMS): a protocol for a systematic review and meta-analysis

BACKGROUND Transcranial magnetic stimulation (TMS) is a technique that can be used to assess corticospinal plasticity. Current TMS practices involve the administration of multiple stimuli over target areas of the participant's scalp. However, these procedures require 1 to 2 h per assessment. Decreasing the number of stimuli delivered during TMS assessments would improve time efficiency and decr...

متن کامل

Does the Longer Application of Anodal-Transcranial Direct Current Stimulation Increase Corticomotor Excitability Further? A Pilot Study

 Introduction: Anodal transcranial direct current stimulation (a-tDCS) of the primary motor cortex (M1) has been shown to be effective in increasing corticomotor excitability.  Methods: We investigated whether longer applications of a-tDCS coincide with greater increases in corticomotor excitability compared to shorter application of a-tDCS. Ten right-handed healthy participants received one se...

متن کامل

Reliability of Motor Evoked Potentials Induced by Transcranial Magnetic Stimulation: The Effects of Initial Motor Evoked Potentials Removal

Introduction: Transcranial magnetic stimulation (TMS) is a useful tool for assessment of corticospinal excitability (CSE) changes in both healthy individuals and patients with brain disorders. The usefulness of TMS-elicited motor evoked potentials (MEPs) for the assessment of CSE in a clinical context depends on their intra-and inter-session reliability. This study aimed to evaluate if removal ...

متن کامل

The Effect of rTMS with Rehabilitation on Hand Function and Corticomotor Excitability in Sub-Acute Stroke

Objectives: Stroke is the leading cause of long-term disability. Hand motor impairment resulting from chronic stroke may have extensive physical, psychological, financial, and social implications despite available rehabilitative treatments. The best time to start treatment for stroke, is in sub-acute period. Repetitive transcranial magnetic stimulation (rTMS) is a method of stimulating and ...

متن کامل

MEDIAN NERVE STIMULATION PO TENTIATES THE MU SCLE RESPONSES TO TRANS C RANIAL MAGNETIC STIMULATION

Motor responses evoked by transcranial magnetic stimulation OMS) or transcranial electrical stimulation (TCS) can be facilitated by a prior conditioning stimulus to an afferent nerve. Two facilitation periods are described short (SI), when the nerve stimulus is given near 0 to 10 ms after cranial stimulation, and long (LI), when nerve stimulation is given 25-60 ms before the cranial stimula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017